
Design Architecture for Spotify Social
Features
Rohan Somji

Abstract

“Dear 3,749 people who streamed ‘It’s the End of the World as We Know It’ the day of the

Brexit vote, hang in there.” In 2016, flexing its ‘user data’ muscles, Spotify demonstrated in its

ads that it now has the capacity to extract information from social affairs and use it to peer into

personal moments of users and how these affairs influence their music choices.

My aim in this paper is to unearth the layers of design architecture involved for enabling the

social capabilities a user has on Spotify. Along the way we will see how it relies on older

concepts and systems that were here long before Spotify itself. We will discover that the design

at the bottom level of its architecture (its backend, the system, the cloud services, streaming, data

storage, etc) is the same kind as the one used by many social media companies. Spotify steers

itself in a non-social media direction under the influence of the socio-cultural landscape, to

maintain itself as a solely music & podcast streaming platform, using design at the top level of its

architecture (affordances, constraints, conventions, icons, features, accessibility).

Introduction

Fig: Spotify Ad

As one of the top music and podcast streaming services available, their user base has grown

substantially over the last few years owing to the increase in available music as well as increase

in services. As the user base grew so did a sense of community and a need for social bonding

over music. This involves features to share on social networking platforms, features to see what

your friends are listening to, collaborating on creating playlists, following each other’s playlists,

etc. The data infrastructure underneath the audio and streaming infrastructure is becoming more

relevant each and every day as user data grows and ML techniques are applied.

This year they are making it even more personal with their “2020 wrapped” providing more

granular details on both music and podcast listening habits: how many total minutes users

listened to podcasts, their top podcast with its listen-count, which songs were on repeat, which

song you discovered before they went hit and more.

One of the benefits of using Spotify has always been its mobility. Smartphones made it easy to

keep music portable by connecting the user to a central database of music collection available via

streaming services on the internet. This means the user listens to music in a number of locations

and during a wide range of activities. So do their friends on Spotify. Currently Spotify offers

accessibility to adding friends via facebook, following a friend’s playlists, and being notified of a

friend’s listening activity on the desktop app.

How does all this data get tied up together to provide a highly structured user dataset, intelligible

insights and accurate recommendations? What kind of design architecture allows sensible data to

emerge from this constant in-flux and out-flux of data arriving from multiple separate

interactions of users? What do the design decisions tell us about how Spotify wishes to operate?

Data Infrastructure

Spotify shut down the last of its US data centers in 2016 freeing itself of on-premise

infrastructure and migrating onto Google’s Cloud Computing Platform . The data centers existed

to “send out music files and fetch back user data” (Eriksson et al,2019, 44). Now streaming and

storage of their user data and music files is in Google’s Cloud Storage. The cloud computing

services provide the advantage of Google tools like BigQuery cloud data warehouse, Pub/Sub for

messaging and DataFlow for batch and streaming processing. In the fourth quarter of 2019,

Spotify reported 271 million monthly users and 124 million Premium subscribers, and all this

data is stored in Google’s Cloud Platform (Spotify Case Study (n.d.), Google Cloud Customer).

Clicking the play button, tapping on a playlist, using any affordance provided by Spotify results

in an “event”. Whenever a user performs an action in the Spotify client—such as listening to a

song or searching for an artist— a small piece of information, called an event, is sent to their

servers (Maravić, 2016). Spotify calls the process “Event delivery”, which makes sure that all

events get transported safely from users to a central processing system, managed on Google

Cloud (Maravić, 2016). Cloud Pub/Sub is the transport mechanism for all the events.

Fig: (What Is Pub/Sub? | Cloud Pub/Sub Documentation)

A pub/sub is a message-oriented middleware system where publishers send messages via a portal

that categorizes published messages into classes on one end. The subscribers on the other end

choose which messages to receive (What Is Pub/Sub? | Cloud Pub/Sub Documentation). Both do

this without each other’s knowledge. Here, messages can range from commands to payment

information to subscriptions to premium accounts.

The pub/sub system as part of the internet “uses the bundles of data packed in smaller units”

(Irvine, (n.d.), pp. 6). The packet itself has no information but much like carrier waves in radio

signals, it carries data that can be called the “payload”. This packet has other information in bits

that determines its path in the network and the payload has the message stored in it which is

received, and converted for the GUI on the other end (White, 258-259).

Connecting and accessing databases

User details, such as username, country, and email, are stored in a user database. Every time a

user logs in, that database is queried (Vesterlund, 2015). Spotify uses Apache’s Cassandra and

Hadoop to store user profile attributes and metadata about entities like playlists, artists, etc.

(Mishra & Brown, 2015). These software libraries (by Apache) are frameworks that allow for the

distributed processing of large data sets across clusters of computers using simple programming

models. Similarly, it uses these software libraries for the following (Mishra & Brown, 2015):

Log collection like “completion of a song or delivery of an ad impression,” – Kafka

Real-time event processing like “clicks” “search” – Storm

To remove duplicate events, clean up data to “generate metadata like genre, tempo,” – Crunch

Store user profile attributes and metadata like playlists, artists, etc. – Hadoop and Cassandra

It’s the Storm pipelines that fetch the metadata back, group it per user and determine user level

attributes to represent a user’s profile which is then stored in a Cassandra Cluster. Spotify calls

this the User Profile Store (UPS).

Fig: (Mishra & Brown, 2015)

When a user is listening in real-time, Apache Storm is at work. A large volume of data moves

across all the libraries, while being worked on by Spotify’s recommender algorithm, to generate

“Recently Played” songs, curated playlists like “Discover Weekly”, “Shows to try”,

“Recommended Radio”, etc.

The deployment of these databases along with cloud-based pub/sub system collectively called

Event Delivery system are used to generate and move critical data. These include EndSong

Event (an event emitted when a Spotify user is done listening to a track), which is used to pay

royalties to labels and artists, calculate Daily Active Users (DAU), Monthly Active Users

(MAU); and the UserCreate Event (an event indicating a new Spotify user account was created)

(Janota & Stephenson, 2019).

Connecting users to each other

Users can integrate their Spotify profiles with their Facebook account, and, be able to find all

their Facebook friends who are also on Spotify i.e. within the pub/sub system we mentioned

before, these friends are referred to as “topics” that can be “subscribed” (followed). You can

subscribe even without integrating your Facebook account by searching for one another, i.e.

querying a database (Setty et. al., 2013, pp. 2). Similarly, publicly available user created playlists

can be searched for. Users could also mark these as “collaborative” allowing others to edit,

giving them writing permissions.

In the desktop version, we see a pane on the right side of the screen called “Friend Activity” that

lists the songs they have been listening to.

Fig: (Johnson, 2019)

This means that real-time user metadata is being shared across the platform using the pub/sub

cloud systems through Apache Storm and Casandra that is then presented on the Graphical User

Interface of computers. It might be difficult to understand why Spotify has not yet integrated this

feature into its smartphone app. One possible reason why they have not launched this feature on

smartphones might be because UX researchers and engineers are still in the testing phases to

figure out the best affordances and user flows to optimise smartphone specific user experience

with the “Friend Activity” feature while still maintaining Spotify as a primarily music and

podcast streaming platform as opposed to a social media platform.

Fig: Architecture Supporting Social Interaction (Setty et. al., 2013, pp. 3)

The ‘external database’ mentioned in the figure is now part of Google’s Cloud Storage. All of

Spotify’s backend services are operated via Google Cloud Services still using the Pub/Sub

system.

In terms of database management and access, Spotify uses similar pub/sub systems as Facebook,

Twitter and Google+ (Kermarrec and P. Triantafillou, 2013, pp. 16: 5). Yet Spotify is not a

social media platform. Which means that it is only on the top level of the design architecture that

it fashions itself as a cloud based music and podcast streaming service. At the bottom levels of

the design architecture as well as the kind of user data it has, the way it manages it and the way it

leverages the data, is it remarkably similar to how many social media companies design their

systems.

Privacy

Spotify uses data to calculate royalties, run A/B tests, process payments, serve playlists and

suggest new tracks to users. (Leenders, 2018) This data is protected by encrypting it with a single

keychain. “Each user has their own set of keys that should be used for the encryption” which

reduces the impact of any possible data leak since even hackers need decryption keys.

Additionally it allows Spotify to control the lifecycle of data for individual users centrally.

Padlock is their key management service that manages keychains for all Spotify users. “This

means, for example, every time a user looks at a playlist (even their own), the playlist service

makes a call to Padlock to get the keychain of the playlist owner and then decrypts the playlist.

Each service that calls Padlock gets its own set of keys” (Leenders, 2018). The keys have other

applications as well. For example when a user opts out of targeted advertisement, access to this

user’s personal data by the targeted advertisement can be blocked by removing the

corresponding key so the advertiser can no longer identify the user as a target.

We can also deblackbox ‘friend activity’ and its family of features using our knowledge of

Spotify’s Padlock system. The same encryption-decryption keys must be called upon when users

follow each other or receive notifications about their friend’s activities. The user can opt out of

displaying their data in ‘friend activity’ tabs any time by switching off ‘Listening activity’

which would block access to this user’s personal data related to the relevant ‘friend activity’

metadata by removing the corresponding key.

Fig: Social Privacy Settings

We can deblackbox ‘friend activity’ and its family of features using our knowledge of Spotify’s

Padlock system. The same encryption-decryption keys must be called upon when users follow

each other or receive notifications about their friend’s activities. The user can opt out of

displaying their data in ‘friend activity’ tabs any time. All they have to is switch off ‘Listening

activity’. This would mean that the corresponding key is removed, thus blocking access to this

user’s metadata related to the relevant ‘friend activity’.

Social Savvy Affordances or the lack thereof

It seems that it is a strategic business/political decision then, that Spotify does not become a

social media platform despite the kind of robust data infrastructure it has. With the heavy hitting

that Big Tech is receiving in recent years, it seems reasonable to want to steer clear from the

controversial limelight related to user data. Privacy, market power, free speech and censorship

are key issues that plague social-media based platforms (Boskin, 2019). Spotify has avoided

being politicized, while still proliferating its user database and metadata acquiring capacities.

Despite a range of designs available out there on prototypr.io — from a ‘strong’ social features

centric design (Jessica Man) to a ‘weak’ social features supplemented design (Cecilia Lu,

Sanjana Seshadri), nothing even close has been integrated into Spotify.

 (Fig: Man)

(Fig: Seshadri)

(Fig: Lu)

This means that in terms of UI design, Spotify may not be willing to create affordances that

enable large scale social interactions internally within the app, steering clear of any Facebook

wall-like features. Spotify may be trying to adhere to its privacy statements and avoid political

controversies surrounding user data. Searching people on Spotify is not as straightforward as

Facebook in terms of both accuracy as well as simplicity. You cannot comment, react or tag a

song inside Spotify. The no of actions one can perform on a song one likes is limited. Sharing is

not granted internally, nor are there many features to recommend others, notify or perform any

social actions on these songs. This can partially be explained as a flexibility-usability tradeoff

(Lidwell-Holden, pp. 86) and partially by Spotify’s reluctance to be more social savvy, meaning

the lack of affordances could actually be a strategic design constraint.

De-blackboxing the app reveals that though it has quite similar structures to social media apps, it

is on the user-front that Spotify wishes to remain a streaming platform. It is here that we see how

even technical decisions at the database structure level and UI design decisions depend on not

just universal design principles for efficiency, but also socio-cultural landscapes.

Spotify allows “sharing” via third party apps like Facebook, Whatsapp, Tumblr, etc, using Web-

based APIs but not internally with friends or followers. It does not access contacts on the mobile

phone to connect to other possible Spotify users. Facebook data integration is the only way

Spotify connects its users. It is understood that Spotify Wrapped was created to be shared on

Instagram Stories. Meanwhile, Spotify acquires better AI systems to improve its

recommendation service, continuing to focus on being streaming service platform (Novet, 2020).

This again can be noticed in the proliferating affordances provided for personalized curated

music such as discover weekly, made for you playlists, recommended radio playlists, etc.

Conclusion

Spotify derives its power from its database management systems. All the music and all the user

data is stored on Google cloud using these systems. We saw how pub/sub system is utilised to

operationalise streaming services on Spotify. We saw how various software libraries are used by

Spotify to engage, extract and channel metadata generated by users as they interact on that app.

The library softwares, cloud storage and the pub/sub system form the backbone on which Spotify

functions. Accordingly, there are UI affordances and constraints that the app provides to the user

that dictate how these systems will be used on the backend. And finally we saw how these UI

affordances and constraints are placed, depend not just on universal design principles but also on

the overall strategy of the company i.e. just because Spotify has the user data, the systems and

the capacity to provide certain services (social media related) does not mean that the top level

design has to necessarily exploit bottom level design architecture just because the the bottom

level design has the capacity for it.

References

Boskin, M. (2019, April 29). Big tech must get its house in order or risk stronger regulation |

Michael Boskin. The Guardian. https://www.theguardian.com/business/2019/apr/29/big-tech-

regulation-facebook-google-amazon

Greenberg, D., Kosinski, M., Stillwell, D., Monteiro, B., Levitin, D., & Rentfrow, P. (2016). The

Song Is You: Preferences for Musical Attribute Dimensions Reflect Personality. Social

Psychological and Personality Science, 7. https://doi.org/10.1177/1948550616641473

Jakobsen, A. Y. L. (2018). Eventization of listening: A qualitative study of the importance of

events for users of the streaming service Spotify. 125.

Janota, B., & Stephenson, R. (2019, November 12). Spotify’s Event Delivery – Life in the

Cloud.

Spotify Engineering. https://engineering.atspotify.com/2019/11/12/spotifys-event-delivery-life-

in-the-cloud/

Johnson, D. (2019). How to Find Friends on Spotify. Lifewire. https://www.lifewire.com/how-

to-add-friends-on-spotify-4692334

Kermarrec, A.-M., & Triantafillou, P. (2013). XL peer-to-peer pub/sub systems. ACM

Computing Surveys, 46(2), 16:1–16:45. https://doi.org/10.1145/2543581.2543583

Leenders, B. (2018, September 18). Scalable User Privacy. Spotify Engineering.

https://engineering.atspotify.com/2018/09/18/scalable-user-privacy/

Lidwell, W., Holden, K., & Butler, J. (2010). Universal Principles of Design, Revised and

Updated: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make Better

Design Decisions. Rockport Publishers.

Lu, C. (2018, December 16). Spotify Mobile Case Study: Integrating Friend Activity. Medium.

https://blog.prototypr.io/spotify-mobile-case-study-integrating-friend-activity-30de0cf12ee

Man, J. (2019, August 10). Re-imagining Spotify as a Social Media Platform. Medium.

https://blog.prototypr.io/re-imagining-spotify-as-a-social-media-platform-2a646e60ab5f

Maravić, I. (2016, February 25). Spotify’s Event Delivery – The Road to the Cloud (Part I).

Spotify Engineering. https://engineering.atspotify.com/2016/02/25/spotifys-event-delivery-the-

road-to-the-cloud-part-i/

Martin Irvine, The Internet: Design Principles and Extensible Futures

Mishra, & Brown. (2015, January 9). Personalization at Spotify using Cassandra. Spotify

Engineering. https://engineering.atspotify.com/2015/01/09/personalization-at-spotify-using-

cassandra/

Novet, J. (2017, May 18). Spotify just bought an AI startup to help it stay ahead of Apple Music.

CNBC. https://www.cnbc.com/2017/05/18/spotify-buys-niland-french-ai-music-startup.html

Nudd, T. (2009). Spotify Crunches User Data in Fun Ways for This New Global Outdoor Ad

Campaign. https://www.adweek.com/creativity/spotify-crunches-user-data-fun-ways-new-

global-outdoor-ad-campaign-174826/

Reach for the Top: How Spotify Built Shortcuts in Just Six Months. (2020, April 15). Spotify

Engineering. https://engineering.atspotify.com/2020/04/15/reach-for-the-top-how-spotify-built-

shortcuts-in-just-six-months/

Ron White, “How the Internet Works.” Excerpt from How Computers Work. 10th ed. Que

Publishing, 2015.

Seshadri, S. (n.d.). Spotify. SANJANA SESHADRI. Retrieved December 8, 2020, from

https://www.sanjanaseshadri.com/work/spotify-friend-activity

Setty, V., Kreitz, G., Vitenberg, R., van Steen, M., Urdaneta, G., & Gimåker, S. (2013). The

hidden pub/sub of spotify: (Industry article). Proceedings of the 7th ACM International

Conference on Distributed Event-Based Systems – DEBS ’13, 231.

https://doi.org/10.1145/2488222.2488273

Spotify Case Study. (n.d.). Google Cloud. Retrieved December 9, 2020, from

https://cloud.google.com/customers/spotify

Vesterlund, M. (2015, June 23). Switching user database on a running system. Spotify

Engineering. https://engineering.atspotify.com/2015/06/23/user-database-switch/

What Is Pub/Sub? | Cloud Pub/Sub Documentation. (n.d.). Google Cloud. Retrieved December 7,

2020, from https://cloud.google.com/pubsub/docs/overview

